

Resolving the Extragalactic γ-ray Background above 50 GeV with Fermi-LAT arXiv:1511.00693

Mattia Di Mauro SLAC (Stanford University)

Marco Ajello Clemson University

On behalf of the Fermi-LAT Collaboration

Sixth International Fermi Symposium, Washington D.C., 2015-11-11

2FHL CATALOG

*n*FGL Catalogs detect and characterize sources in the ~0.1-100 GeV Catalogs *n*FHL Catalogs explore the higher-energy sky

Why 2FHL? Improvement delivered by Pass 8 enables study of the EBL, EGB,

Galactic plane, and connects well to the TeV world R₆₈ Containment (is 2.5 ≈ 2.5 P8R2_SOURCE_V6 Containment angle (Acceptance (m P7REP_SOURCE_V15 P8R2_SOURCE_V6 PSF3 P8R2_SOURCE_V6 10 P7REP_SOURCE_V15 0.5 10⁻² 10 10 10 10 10 10 Energy (MeV) Energy (MeV) 2FHL 1FHL 1FGL/2FGL/3FGL 10^{-1} 10 GeV

ANALYSIS DETAILS

ANALYSIS DETAILS

- Energy Range: 50-2000 GeV
- · IRFs: P8R2_SOURCE_V6
- ~80 months of data
- Unbinned likelihood

DETECTIONS

- ~360 sources: 75% blazars, 11% Galactic sources, 14% unassociated
- At lbl>10 $^{\circ}$ -> 70% BL Lacs and only 7 % No BL Lacs
- BCU type and unassociated sources —> 23%.
- The median of BCU v_{sy} and the Γ of unassociated sources are very similar to that one of BL Lacs
- This means that the fraction of likely blazars in the highlatitude 2FHL sample is 97%.

GAMMA-SKY FOR E>50 GeV

61,000 photons E > 50 GeV 18,000 photons E > 100 GeV \longrightarrow 1.5 ph/deg² 2,000 photons E > 500 GeV

PHOTON FLUCTUATION ANALYSIS 1

- We employed the photon fluctuation analysis to derive the shape of the flux distribution below the sensitivity of the 2FHL cat.
- Simulations with different value of the break and of the slope below the break have been tested.
- The flux distribution results to be consistent with a broken power law with a break in the range $S_b = [0.8,1.5] \cdot 10^{-11}$ ph/cm²/s and a slope above and below the break $\alpha_1 = 2.50$ and $\alpha_2 = [1.6,1.75]$
- The sensitivity of this method is around 1.3 · 10-12 ph/cm²/s

PHOTON FLUCTUATION ANALYSIS 2

- Test a re-steepening with $a_3 = 2.50$.
- This may occur with a new source population as Star Forming Galaxies.
- We consider $S_b=10^{-11}$ ph/cm²/s and a slope above and below the break α_1 = 2.50 and α_2 =1.60
- We add a second break between $[0.5,5] \cdot 10^{-12}$ ph/cm²/s and a slope below the break $a_3 = 2.50$.
- The upper limit for the position of this second break 7.10-13 ph/cm²/s

SIMULATED SKY MAP FOR E>50 GeV

CONSISTENCY CHECKS

THE RATIOS CONVERGE TO 1!!

The photon index distribution of the analyzed simulations is consistent with the one of the 2FHL catalog

CONSISTENCY CHECKS

0

Eddington bias

The photon index distribution of the analyzed simulations is consistent with the one of the 2FHL catalog

Detection Efficiency

$$\omega(S^i \in [S^i_{\min}, S^i_{\max}]) = \frac{N^i_{\text{meas}}}{N^i_{\text{true}}}$$

Efficiency~1 for bright sources

CORRECTED LOGN-LOGS

- A fit to the corrected LogN-LogS of the 2FHL gives $a = 2.49 \pm 0.12!$
- This is the result of 10 simulations.
- The band takes into account the uncertainty of the flux distribution given by the photon fluctuation analysis.

The orange and red curves indicate where 85% and 100% of the EGB intensity above 50 GeV would be produced when extrapolating the flux distribution below the break with different values of faintend slope, a₂.

CORRECTED LOGN-LOGS

- A fit to the corrected LogN-LogS of the 2FHL gives $a = 2.49 \pm 0.12!$
- This is the result of 10 simulations.
- The band takes into account the uncertainty of the flux distribution given by the photon fluctuation analysis.

The Euclidean distribution below the 2FHL cat threshold is constrained by the EGB.

CUMULATIVE SOURCE COUNT DISTRIBUTION

- The observed cumulative source count distribution is consistent with theoretical prediction of Di Mauro et al. 2014, Giommi et al. 2015 and Ajello et al. 2015.
- The expected sensitivity of CTA is just below the Fermi-LAT sensitivity.
- We have already resolved almost all the gamma-ray sky CTA will observe!!

- The CTA sensitivity is reachable in 240 hours in the most sensitive pointing strategy.
- At these fluxes the source density is 0.0194±0.0044 deg⁻², which translates into the serendipitous detection of 200 ± 45 sources in a field of one quarter of the entire sky

CONTRIBUTION TO THE IGRB AND ANISOTROPY

$$I = \int_{S_{\min}}^{S_{\max}} S \frac{dN}{dS} dS$$
 [ph cm⁻² s⁻¹ sr⁻¹]

$$[\mathrm{ph}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}]$$

EGB $-> (2.40\pm0.30)\cdot10^{-9} \text{ ph/cm}^2/\text{s/sr}$ 2.07^{+0.40}-0.35 · 10⁻⁹ ph/cm²/s/sr

86%⁺¹⁶-14 of the EGB

$$C_P = \int_0^\infty (1 - \omega(S)) \, S^2 \frac{dN}{dS} dS \quad [(\text{ph/cm}^2/\text{s})^2 \, \text{sr}^{-1}] \quad \frac{\sqrt[5]{5}}{\sqrt[5]{5}} \, 10^{-19}$$

 $C_p(E > 50 \text{ GeV}) = 9.4^{+1.0}_{-1.5}$ 10⁻²² (ph/cm²/s)²/sr

Di Mauro et al. 2014

CONCLUSIONS

- We have performed a detailed analysis of the gamma-ray sky for E>50
 GeV using the 2FHL catalog and simulations of the sky.
 - A. dN/dS is a broken power-law with $S_{break}=[0.8,1.5]*10^{-11}$ ph/cm²/s, $\alpha_2=[1.6,1.75]$ and $\alpha_1=2.50$.
 - B. The photon fluctuation analysis permits us to lower with about a factor of 8 the sensitivity with respect to the threshold of the 2FHL cat.
- The 2FHL opens a new window for the high-energy gamma-ray sky.
 - C. The Fermi-LAT sensitivity is just above the expected sensitivity of CTA.
 - D. For the first time the LAT resolve 86% of EGB with point sources.

Consequences

- E. Small room (<14%) is left to other exotic channels as gamma rays produced from annihilation or decay of DM particles and emission from other diffuse processes as interaction of UHECRs with EBL.
- F. These results will have a strong impact also on the interpretation of IceCube detected astrophysical flux of neutrinos. (See Justin's poster and K. Bechtol, M. Ahlers, M. Di Mauro, M. Ajello, J. Vandenbroucke arXiv:1511.00688!!)
- G. The blazar SED in 2FHL catalog confirm the presence of attenuation of very high-energy gamma rays given by the absorption with the EBL (A. Dominguez and M. Ajello arXiv:1510.07913).

BACKUP

SIMULATION OF THE SKY FOR E>50GeV AND lbl>10deg

- Gamma-ray Space Telescope
- We simulate the gamma-ray sky at E>50 GeV with GTOBSSIM part of the Fermi Science Tools
- · Galactic diffuse template: gll_iem_v06.fits .
- Isotropic diffuse template: iso P8R2_SOURCE_V6_v06.txt.
- Isotropic distribution of sources with an Euclidian distribution above the Fermi-LAT sensitivity (~10⁻¹¹ ph/cm²/s)

EDDINGTON BIAS

- The Eddington bias is given by statistical fluctuation of sources with a simulated flux below the threshold to a flux above the threshold.
- Our analysis is affected by this effect.
- We have checked with our simulations that we are able to re-construct the simulated flux distribution from the observed one using the efficiency.

PHOTON FLUCTUATION ANALYSIS 1

- We employed the photon fluctuation analysis to derive the shape of the flux distribution below the sensitivity if the 2FHL cat.
- Simulations with different value of the break and of the slope below the break have been tested.
- The flux distribution results to be consistent with a broken power law with a break in the range $[0.8,1.5] \cdot 10^{-11}$ ph/cm²/s and a slope above and below the break $\alpha_1 = 2.50$ and $\alpha_2 = [1.6,1.75]$
- The sensitivity of this method is around 1.3 · 10-12 ph/cm²/s

Q 2	χ^2
1.40 ± 0.10	25.0
1.60 ± 0.03	15.5
1.65 ± 0.03	12.4
1.75 ± 0.03	14.6
1.85 ± 0.02	17.0
	1.40 ± 0.10 1.60 ± 0.03 1.65 ± 0.03 1.75 ± 0.03

ANALYSIS OF THE SIMULATIONS

- The 10 simulations are analyzed exactly as the real data.
- This starts from the detection of seeds using a sliding-cell algorithm and a wavelet analysis. The seed list contains real sources and also statistical fluctuations of the background.
- A ROI of 5deg is created for each seed. A sky model, that includes all the potential sources and diffuse backgrounds is fitted to the data using the un-binned ML with Fermi Science Tools (version v10 r01 00).
- The position of each seed is refined repeating the fit three times, after the spectral parameters of each model component have been optimized.
- Detected sources are those with a TS>25 and a number of emitted photons (as predicted by the likelihood) of Npred≥3.
- Typically, this leads to the detection of on average 270 sources for lbl
 10 which is in good agreement with the 253 sources

EGB $-> (2.40\pm0.30)\cdot10^{-9} \text{ ph/cm}^2/\text{s/sr}$

Evidence against star-forming galaxies as the dominant source of IceCube neutrinos

Keith Bechtol, M. Ahlers, M. Di Mauro, M Ajello and J. Vandenbroucke

This is a cat III paper (https://www-glast.stanford.edu/cgi-prot/
pub_download?id=1214).

SPECTRAL ANALYSIS OF FERMI -LAT BLAZARS ABOVE 50 GEV

Alberto Dominguez and Marco Ajello

- This is a cat II paper https://www-glast.stanford.edu/cgi-prot/pub_download?id=1198)
- They present an analysis of the intrinsic (unattenuated by the extragalactic background light, EBL) power-law spectral indices of 128 extragalactic sources detected up to z=2.
- They find that our data are compatible with simulations that include intrinsic blazar curvature and EBL attenuation.

SANITY CHECKS

THE RATIOS CONVERGE TO 1!!

The photon index distribution of the analyzed simulations is consistent with the one of the 2FHL catalog

CORRECTED LOGN-LOGS

- A fit to the corrected LogN-LogS of the 2FHL gives $a = 2.49 \pm 0.12!$
- This is the result of 10 simulations.
- The band takes into account the uncertainty of the flux distribution given by the photon fluctuation analysis.

2FHL CATALOG

ANALYSIS

- Energy Range: 50-2000 GeV
- · IRFs: P8R2_SOURCE_V6
- ~80 months of data (MET 239557417 444440679)
- · lbl>10 deg

DATA CUTS:

- gtselect zmax=105
- gtmktime 'IN_SAA!=T&&DATA_QUAL==1&&LAT_CONFIG==1'
- · roicut=no
- gtltcube zmax=105

DETECTIONS

- Catalog version v4
- · ~360 sources
- 71 detected by ACTs (TeVCat)
- · 206 detected in 1FHL
- · 234 detected in 3FGL (4 years, up to 300 GeV)
- · ~60 brand new sources
- ~100 sources not in 1FHL and ~250 not in TeVCat

2FHL CAT PROPERTIES b>10 deg

Fit for F(>50 GeV)>
$$2 \cdot 10^{-11}$$
 ph/cm²/s
$$\alpha_1 = 2.50 \pm 0.12$$

$$dN/dS \sim S^{-\alpha}$$

$$\Gamma = 3.5 \pm 1.6$$

SIMULATION OF THE SKY FOR E>50GeV

Gamma-ray Space Telescope

- Sources with a dN/dS slope of 2.5 and a photon index of 3.2 ± 0.7
- Extended isotropic diffuse using: isotropic_source_4years_P8V3_extended.txt
- Galactic diffuse using: template_4years_P8_V2_scaled.fits
- We have used the command gtobssim with version ScienceTools-10-01-00

dN/dS of the Simulation

The slope of the dN/dS is consistent with 2.5

We obtain from the analysis of the simulations on average 264 sources

dN/dS and dN/dΓ

Γ Ratio

PIXEL COUNTING 1

- We use the pixel counting method in order to infer the slope of dN/dS below the threshold (8·10⁻¹² ph/cm²/s).
- We consider a broken power-law.
- The slope of the dN/dS above the threshold is the one of the catalog $a_1 = 2.50$.
- We make different choices of the flux break [0.6,0.8,1,1.5,2] · 10⁻¹¹ ph/cm²/s.
- For each choice of the flux break we take a value for the slope ranging between [1.3,2.7].
- We generate for each choice of the flux break and for each value of the slope below the break 20 simulations of the sky.
- We compare, using a χ^2 method, the real sky and the simulation pixel counting distributions.
- The sensitivity of this method is around 1.3·10⁻¹² ph/cm²/s

ANALYSIS OF SIMULATIONS

- We have performed 10 simulations.
- Each simulation has been analyzed with an unbinned method using rungt.py.
- This starts from the detection of source candidates (called seeds).
- A region of interest (ROI) is created for each seed and a sky model is fitted to the data using the unbinned ML algorithm (Fermi Science Tools version v10_r01_00).
- The result of each simulation is used as a starting point to analyze again the simulation in order to improve position calculation of the sources
- Because the significance of a source depends both on its optimized position and the spectral parameters, this procedure is repeated three times to make sure that all the parameters have been refined successfully
- As in the 2FHL catalog, detected sources are those with a TS>25 and a number of emitted photons (as predicted by the likelihood) of N_{pred} > 3. Typically, this leads to the detection of ~270 sources for lbl > 10° which is in good agreement with the 253 sources detected in the 2FHL

PIXEL COUNTING SENSITIVITY

- In order to find the sensitivity of the pixel counting method we have considered a double broken power law with the first break at 1 · 10⁻¹¹ ph/cm²/s and the second break ranging between [0.5,5] · 10⁻¹² ph/cm²/s.
- The slope above and below the first break is fixed to be 2.50 and 1.60 respectively.
- The slope below the second break is fixed to be
 1.80 which is not the best fit value of the slope!
- We generate for each choice of the flux break 20 simulations and we compare the real sky and simulations pixel counting distributions with a χ^2 method.

Sbreak(ph/cm2/s))	χ^2
5 ·10 ⁻¹³	14
7 ·10 ⁻¹³	14
1·10 ⁻¹²	14
1.3·10 ⁻¹²	17
1.5·10 ⁻¹²	19
2·10 ⁻¹²	21
3·10 ⁻¹²	25
5·10 ⁻¹²	34

PIXEL COUNTING 2

- We employed the photon fluctuation analysis to derive the shape of the flux distribution below the sensitivity if the 2FHL cat.
- Simulations with different value of the break and of the slope below the break have been tested.
- The flux distribution results to be consistent with a broken power law with a break in the range $[0.8,1.5]\cdot 10^{-11}$ ph/cm²/s and a slope above and below the break $\alpha_1 = 2.50$ and [1.6,1.75]

$S_{break(ph/cm2/s))}$	α_2	χ^2
6 · 10 - 12	1.40 ± 0.10	25.0
8 · 10 - 12	1.60 ± 0.03	15.5
1.10-11	1.60 ± 0.03	12.4
1.5·10 ⁻¹¹	1.75 ± 0.03	14.6
2.10-11	1.85 ± 0.02	17.0

PIXEL COUNTING 3

- Gamma-ray Space Telescope
- The flux break can vary between $[0.8,1,1.5] \cdot 10^{-11}$ ph/cm²/s with a slope below the threshold ranging between $\alpha_2 = [1.6,1.75]$.
- The choice of a break lower than $0.8 \cdot 10^{-11}$ ph/cm²/s gives large value for χ^2 .
- Our benchmark model for the flux differential distribution is a broken power-law with a break at $1 \cdot 10^{-11}$ ph/cm²/s and with a slope above and below the break of $\alpha_1 = 2.50$ and $\alpha_2 = 1.60$ respectively.

